PRO^{2nd} ed. **STATE** of the art

21st, 22nd January 2020

Teatro Sociale Trento | Italy

SCIENTIFIC COMMITTEE Orazio Caffo Giovanni Pappagallo

Local treatments in the management of metastatic disease

Marco Messina

U.O.C. Oncologia Medica Fondazione Istituto G. Giglio - Cefalù Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

- Castration naive
- Castration resistant
 - ✓Oligoprogression on ADT
 - ✓ Oligoprogression on ARTA

Modulo dichiarazione conflitto di interessi

Tutti i rapporti finanziari intercorsi negli ultimi due anni devono essere dichiarati.

Non ho rapporti (finanziari o di altro tipo) con le Aziende del farmaco

X Ho / ho avuto rapporti (finanziari o di altro tipo) con le Aziende del farmaco

Relationship	Company/Organization
Consulting	Sanofi
Congress Honoraria	Sanofi, Amgen, Novartis, AstraZeneca
Congress Support and Sponsoring	Astellas, Janssen, Sanofi, Novartis, AstraZeneca, Eli Lilly, Roche, Amgen, Merk, BMS, Pfizer, Servier

70 years old

PSA 40 ng/ml ALP 450 UI/L Biopsy: PC - GS 7 (3+4)

First-line treatment: LH-RHa

Any other option?

- 1. Nothing
- 2. Abiraterone/Prednisone
- 3. Apalutamide
- 4. Enzalutamide
- 5. Docetaxel

De novo Oligometastatic

Low Volume (CHAARTED)

Low Risk (LATITUDE) 70 years old

PSA 40 ng/ml ALP 450 UI/L Biopsy: PC - GS 7 (3+4)

First line treatment: LH-RHa

Low Volume (CHAARTED)

Low Risk (LATITUDE)

Recommendation	Level
Offer castration alone, with or without an anti-androgen, to patients unfit for, or unwilling to consider, castration combined with docetaxel or abiraterone acetate plus prednisone or prostate radiotherapy.	Strong
Offer castration combined with chemotherapy (docetaxel) to all patients whose first presentation is M1 disease and who are fit enough for chemotherapy.	Strong
Offer castration combined with abiraterone acetate + prednisone to all patients whose first presentation is M1 disease and who are fit enough for the regimen	Strong

EAU - ESTRO - ESUR -SIOG Guidelines on Prostate Cancer

Combination strategies for mHSPC Phase III trials

Agent	Study	HR OS, CI 95%
Docetaxel	CHAARTED Kyriakoupulos , JCO 2018	0.72 (0.59 -0.89)
Docetaxel	GETUG-15 Gravis, Eur Urol 2015	0.88 (0.68-1.14)
Docetaxel	STAMPEDE Clarke, Ann Onc 2019	0.81 (0.69-0.95)
Abiraterone	STAMPEDE James, NEJM 2017	0.61 (0.49-0.75)
Enzalutamide	ARCHES Armstrong, JCO 2019	NR
Enzalutamide	ENZAMET Davis, NEJM 2019	0.67 (0.52-0.86)
Apalutamide	TITAN Chi, NEJM 2019	0.67 (0.51-1.89)

70 years old

PSA 40 ng/ml ALP 450 UI/L Biopsy: PC - GS 7 (3+4)

First line treatment: Degarelix

Any other option?

- 1. Nothing
- 2. Abiraterone/Prednisone
- 3. Apalutamide
- 4. Enzalutamide
- 5. Docetaxel

6. Local treatment to the primary (RT or Surg)

De novo Oligometastatic

Low Volume (CHAARTED)

Low Risk (LATITUDE)

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences •Castration naive •Castration resistant ✓Oligoprogression on ADT ✓Oligoprogression on ARTA

O FOCUS ON MIGRATION AND METASTASIS

The metastatic niche: adapting the foreign soil

Psaila et Al. Nat Rew 2009

Tumor Self-Seeding by Circulating Cancer Cells

Increased Vascular Tumor branching

Change in Tumor Volume

kim et Al. Cell 2009

Imnomodulatory properties of Radiotherapy

kim et Al. Cell 2009

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences

RadiotherapySurgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences •Castration naive •Castration resistant ✓Oligoprogression on ADT ✓Oligoprogression on ARTA

Retrospective data for Local Therapy in metastatic Prostate Cancer

Author	Data Source	Patients	Intervention	Outcome
Parikh 2017	NCDB 2004-2013	6.051	LT vs No-LT	5yOS: 45.7% vs 17.1% p=0.01
Loppenberg 2017	NCDB 2004-2012	15.501	LT vs No-LT	Cancer specific Mortality HR 0.57
Bannurah 2017	SEER 2004-2013	13.692	LT vs No-LT	Cancer specific Mortality HR 0.40
Pompe 2018	SEER 2004-2014	13.906	LT vs No-LT	Cancer specific Mortality HR 0.57
Culp 2014	SEER 2004-2010	8185	LT vs No-LT	5yOS p<0.001
Satkunasivam 2015	SEER 2004-2009	4.069	LT vs No-LT	Cancer specific Mortality HR 0.38-0.48
Limitations	Retrospective Selection bias Selection bias Eterogeneity of interventions No informations about subsequent treatments Different outcomes and reporting			

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences •Castration naive •Castration resistant ✓Oligoprogression on ADT ✓Oligoprogression on ARTA Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial

100 ADT + radiation therapy $\log rank p = 0.4$ •Multicentre RCT recruiting 432 80 pts with PSA>20 on bone scan Overall survival (%) between 2004 and 2014 40- Randomised to either ADT with HR 0.9 EBRT (70Gy/35 or 57.76Gy/19, 95% CI:0.70-1.14 20 p = 0.4pelvic nodes not included) or ADT alone (control group) 72 24 48 96 Time to death or last follow up (mo) No. at risk 145 27 11 ADT 216 65 161 61 33 13 ADT + radiation therapy 215

Overall Survival

Boevè et Al. Eur Urol 2018

- Main outcome measure: Overall survival
- Secondary outcome measures:
 - Failure-free survival
 - Symptomatic local events (SLE)
 - Toxicity
 - Progression-free survival
 - Metastatic progression-free survival
 - Cause specific survival
 - Symptomatic skeletal events
 - Quality of life

36Gy/6 fractions/6 weeks **or** 55Gy/20 fractions/4 weeks Schedule nominated before randomisation

- Pre-specified subgroup analyses
 - Radiotherapy schedule (daily vs weekly)
 - Metastatic burden (low vs high)

Parker et Al. Lancet Onc 2018

RESULTS: Baseline characteristics

Characteristic		SOC (n=1029)	SOC+RT (n=1032)	
Age (years)	Median (IQR)	68 (63-73)	68 (63-73)	
	Range	37-86	45-87	
PSA (ng/ml)	Median (IQR) Range	(IQR) 98 (30-316) 97 (33-316) Range 1-20590 1-111		
Metastatic burden	Low	409 (<u>42%)</u>	410 (43%)	
	High	567 (58%)	553 (57%)	
	Not classified	53	69	
Site of metastases	Bone	919 (89%)	917 (89%)	
	Liver	23 (2%)	19 (2%)	
	Lung	42 (4%)	48 (5%)	
	Distant lymph nodes	294 (29%)	304 (29%)	
	Other	35 (3%)	33 (3%)	
Docetaxel use	No	845 (82%)	849 (82%)	
	Yes	184 <u>(18%)</u>	183 (<u>18%)</u>	

MRC CTU at UCL

Overall Survival: subgroup analysis

Parker et Al. Lancet Onc 2018

Overall Survival: subgroup analysis

Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses

- Was the subgroup variable a baseline characteristic?
 Was the subgroup variable a stratification factor? X explicitly:
- Was the subgroup hypothesis specified a priori?
- Was the analysis one of a small number of subgroups tested?
- Was the test of interaction significant?
- Was the significant interaction effect independent?
- . Was the direction of the subgroup effect correctly pre-specified? ✓
- Was the effect consistent with previous studies?
- Was the effect consistent across related outcomes?
- Indirect supportive evidence eg. biological rationale?

Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses

- Was the subgroup variable a baseline characteristic?
- Was the subgroup variable a stratification factor?
- Was the subgroup hypothesis specified a priori?
- Was the analysis one of a small number of subgroups tested?
- Was the test of interaction significant?
- Was the significant interaction effect independent?
- . Was the direction of the subgroup effect correctly pre-specified? ✓
- Was the effect consistent with previous studies?
- Was the effect consistent across related outcomes?
- Indirect supportive evidence eg. biological rationale?

The effect is consistent with HORRAD

Boeve et al. Eur Urol (2018)

MRC CTU at UCL

Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses

- Was the subgroup variable a baseline characteristic?
- Was the subgroup variable a stratification factor?
- Was the subgroup hypothesis specified a priori?
- Was the analysis one of a small number of subgroups tested?
- Was the test of interaction significant?
- Was the significant interaction effect independent?
- . Was the direction of the subgroup effect correctly pre-specified? ✓
- Was the effect consistent with previous studies?
- Was the effect consistent across related outcomes?
- Indirect supportive evidence eg. biological rationale?

Failure-free Survival: subgroup analysis

Parker et Al. Lancet Onc 2018

Prostate Cancer

Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis

Burdett et Al. Eur Urol 2019

Prostate Cancer

Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis

Overall Survival by number of metastases (<5 vs ≥5)

enefit is limited to Low Volume disease or patients with <5 metastases

Burdett et Al. Eur Urol 2019

70 years old

PSA 40 ng/ml ALP 450 UI/L Biopsy: PC - GS 7 (3+4)

First line treatment: Degarelix

Recommendation	Level
Offer castration alone, with or without an anti-androgen, to patients unfit for, or unwilling to consider, castration combined with docetaxel or abiraterone acetate plus prednisone or prostate radiotherapy.	Strong
Offer castration combined with chemotherapy (docetaxel) to all patients whose first presentation is M1 disease and who are fit enough for chemotherapy.	Strong
Offer castration combined with abiraterone acetate + prednisone to all patients whose first presentation is M1 disease and who are fit enough for the regimen	Strong
Offer castration combined with prostate radiotherapy to patients whose first presentation is M1 disease and who have low volume of disease by CHAARTED criteria	Weak

De novo Oligometastatic

Low Risk (LATITUDE)

rong	
rong	
rong	
Veak	

EAU - ESTRO - ESUR -SIOG Guidelines on Prostate Cancer

Treatment options for Low Volume mHSPC

Agent	Study (rep. for Low Volume Subgroup)	HR OS, CI 95%	% Toxicity Grade≥3
Docetaxel	CHAARTED Kyriakoupulos , JCO 2018	1.02 (0.70-1.55)	42
Docetaxel	GETUG-15 Gravis, Eur Urol 2015	1.02 (0.67-1.55)	
Docetaxel	STAMPEDE Clarke, Ann Onc 2019	0.76 (0.54-1.07)	52
Abiraterone	STAMPEDE Hoyle, Ann Onc 2019	0.63 (0.42-0.96)	47
Enzalutamide	ARCHES Armstrong, JCO 2019	NR	24
Enzalutamide	ENZAMET Davis, NEJM 2019	0.43 (0.26-0.72)	49
Apalutamide	TITAN Chi, NEJM 2019	0.67 (0.34-1.32)	42
Radiotherapy	STAMPEDE Parker, Lancet Onc 2018	0.68 (0.52-0.90)	5

Other considerations:

Treatment durationCosts

Open Issue: any benefit combining RT and AARTA?

PEACE-1: European Phase III Trial in de novo Metastatic Prostate Cancer (revised design)

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences •Castration naive •Castration resistant ✓Oligoprogression on ADT ✓Oligoprogression on ARTA

Retrospetive data for Radical Prostatectomy in metastatic Prostate Cancer

Author	Data Source	Patients	Intervention	Outcome
Bannurah 2017	SEER 2004-2013	13.692	RP vs RT	Cancer specific Mortality HR 0.59
Pompe 2018	SEER 2004-2014	13.906	RP vs No-LT	Cancer specific Mortality HR 0.55
Culp 2014	SEER 2004-2010	8185	LT vs No-LT	5yOS 67% vs 22.5% p<0.001
Satkunasivam 2015	SEER 2004-2009	4.069	LT vs No-LT	Cancer specific Mortality HR 0.48
Gratzke 2014	Munich Canc. Registry 1998-2010	1538	RP vs No-RP	5yOS 55% vs 21% p<0.01
Jang 2018	Single Center 2005-2015	91	RP-Robot vs No-LT	Cancer specific Survival NR vs 40 mo p=0.002

Role of Radical Prostatectomy in Metastatic Prostate Cancer: Data from the Munich Cancer Registry Might Men Diagnosed with Metastatic Prostate Cancer Benefit from Definitive Treatment of the Primary Tumor? A SEER-Based Study

Overall Survival

Prostate Cancer Specific Mortality

Gratzke et Al. Eur Urol 2014

Culp et Al. Eur Urol 2014

Does Cytoreductive Prostatectomy Really Have an Impact on Prognosis in Prostate Cancer Patients with Low-volume Bone Metastasis? Results from a Prospective Case-Control Study

83 low-volume mHSPC (1-3 lesions)

Parker et Al. Lancet Onc 2018

Local treatment to the primary tumor (Rt or Surg)

Basing on 2 RCT and 1 meta-analysis RT should not be recommended for the ITT population....but it can be considered for patients with *low volume M1 disease (OS sig. improved)*

Surgery is not yet validated and should be considered experimental

Metastasis-directed therapy in oligometastatic disease
Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

- Castration naive
- Castration resistant
 - ✓Oligoprogression on ADT
 - ✓ Oligoprogression on ARTA

70 years old

PSA 40 ng/ml ALP 450 UI/L Biopsy: PC - GS 7 (3+4)

First line treatment: LH-RHa

Any other option?

- 1. Nothing
- 2. Abiraterone/Prednisone
- 3. Apalutamide
- 4. Enzalutamide
- 5. Docetaxel
- 6. Local treatment to the primary (RT or Surg)
- 7. Metastasis directed treatment

Low Risk (LATITUDE) 75 years old

Oligoprogression on ADT

2014 - PSA 8 ng/ml Radical prostatectomy for Adenocarcinoma GS 7 (3+4) pT3b pN0 M0. Adjuvant Radiotherapy

2017 - PSA 1,5 ng/ml Abd. MRI and C-PET Neg. LH-RHa

2019 – PSA 3,9 ng/ml (Doubl. T.8 mo) C-PET: 2 lymph nodes mets

Metastasis-directed Radiotherapy (37.5 Gy)

78 years old

2015 - PSA 98 ng/ml Biopsy: Adenocarcinoma GS 7 (3+4) CT and Bone scan: lymph nodes and Bone metastases LH-RHa

2017 – PSA 42 ng/ml C-PET: bone progression Enzalutamide (PSA nadir 5 ng/ml)

2019 – PSA 22 ng/ml C-PET: single site of bone progression

Metastasis-directed Radiotherapy (30 Gy)

PSA – PFS 8 months (PSA 3 ng/ml)

Oligoprogression on ARTA

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences •Castration naive •Castration resistant ✓Oligoprogression on ADT ✓Oligoprogression on ARTA

Oligometastatic Concept

'Disease stage with a limited number of clinically detectable metastases'

Implicit in this concept: •unique biologic characteristics •potentially less aggressive disease course

'...subgroup of patients with an intermediate phase of metastatic disease, that presents a potential for disease control with the ablation of the few metastases'

Oligometastatic prostate cancer

No clear definition

'...limited number of of bone and/or lymph nodes metastases'

(61% consensus)

No formal cut-off for the number of metastases to define the 'Oligo-state'

•≤2 metastases (14% consensus)

•≤3 metastases (66% consensus)

•≤5 metastases (20% consensus)

APCCC 2017

Gillessen et Al. Eur Urol 2018

Prognostic Factors Influencing Prostate Cancer-Specific Stratification of Patients With Metastatic Prostate Cancer Survival in Non-Castrate Patients with Metastatic **Prostate Cancer**

Based on Extent of Disease on Initial Bone Scan

100 hh 90 0.9 Prostate cancer-specific survival probability (%) 80 EOD (n-34) < 5 mets0.8 70 • 0.7 Proportion Surviving 60 • 0.6 50 -0.5 EOD II(n=56) >5 mets 40 . 0.4 EODIII(n=56) 30 -0.3 EODIV(n=20) 20 . 0.2 Number_mets 1 metastasis 10 0.1 > 1 metastasis 0 0 0 12 24 36 48 60 72 84 96 108 48 72 84 П 12 24 60 36 Months after metastasis Time(months) Number at risk Group: 1 metastasis 28 23 17 11 5 2 0 35 Group: > 1 metastasis 2 27 21 13 7

Survival by number of metastases

4

4

Survival by extent of disease

Gundem, Prostate 2014

45

Soloway, Cancer 1988

Oligo- and Polymetastatic Progression in Lung Metastasis(es) Patients Is Associated with Specific MicroRNAs

MicroRNAs distribution

Oligometastatic prostate cancer considerations for consensus definition

APCCC 2017

Gillessen, Eur Urol 2018

Goals of metastasis-directed therapies in oligometastatic prostate cancer

Dont't miss the window of opportunity

Treatment goals

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

Castration naive
 Castration resistant

 ✓ Oligoprogression on ADT
 ✓ Oligoprogression on ARTA

Metastasis-directed Therapy of Regional and Distant Recurrences After Curative Treatment of Prostate Cancer: A Systematic Review of the Literature

Single-arm case series

Study	No. of patients	Site of metastasis: node/bone/visceral	Median time to metastatic recurrence, mo	Median PSA at time of metastasis	Staging method	Type of MDT	Median follow-up, mo	Median PFS	Adjuvant ADT (%)	Median duration ADT	Prophylactic nodal radiotherapy (%)
Casamassima et al. [23]	25	25/0/0	11.8-36.7	5.65	Choline PET/CT	SBRT	29	24 mo	None	NA	7 (28)
Muacevic et al. [24]	40	0/40/0	NR	5.4	Choline PET/CT	SBRT	14	NR	27 (68)	NR	NA
Würschmidt et al. [25]	15	15/0/0	NR	1.79	Choline PET/CT	NRT	28	Median not reached: 3-yr PFS: 75%	NR	NR	15 (100)
Ahmed et al. [26]	17	1/15/1	50.4	2.1	Choline PET/CT $(n = 9)$, MRI $(n = 6)$, CT $(n = 1)$, and biopsy $(n = 1)$	SBRT	6	12 mo	15 (88)	NR	NA
Jereczek-Fossa et al. [27]	19	18/1/0	66	1.77 (pelvic nodes); 10.7 (M1)	Choline PET/CT	SBRT	17	Median not reached; 30-mo PFS: 63.5%	19 (100)	12-17 mo	None
Schick et al. [28]	50	33/15/2	15.6	6.7	Choline PET/CT and bone scintigraphy	SBRT (n = 14) NRT (n = 36)	31	1-3 Y	ear	S	25 (50)
Decaestecker et al. [29]	50	27/22/1	57.6	3.8	Choline (n = 18) or FDG (n = 32) PET/CT	SBRT	25	DFS	51	/0	None
Picchio et al. [30]	83	83/0/0	NR	2.6	Choline PET/CT	HRT	22				77 (93)
Rinnab et al. [31]	15	15/0/0	NR	1.98	Choline PET/CT	LND	13.7		TT (73)	NR	1 (7)
Schilling et al. [32]	10	10/0/0	NR	8.75	Choline PET/CT	LND	11	hu	6 (60)	NR	None
Winter et al. [33]	6	6/0/0	NR	2.04	Choline PET/CT	LND	24 mo	NR	None	NA	None
Busch et al. [37]	6	6/0/0	Mean: 79.9	37.6*	Choline (n = 3), MRI (n = 1), CT (n = 2)	LND	NR	15.5 mo	6 (100)	Lifelong ADT	None
Jilg et al. [34]	47	47/0/0	62	11.1	Choline PET/CT	LND	35.5	27 mo	34 (65)	NR	27 (52)
Martini et al. [35]	8	8/0/0	NR	1.62	Choline PET/CT	LND	NR	NR	None	NA	None
Suardi et al. [36]	59	59/0/0	NR	2.0	Choline PET/CT	LND	76.6	60 mo"	24 (41)	24 mo	21 (36)

ADT = androgen-deprivation therapy; CT = computed tomography; FDG = fluorodeoxyglucose; HRT = hypofractionated radiotherapy; LND = lymph node dissection; MDT = metastasis-directed therapy; MRI = magnetic resonance imaging; NA = not applicable; NR = not reported; NRT = normofractionated radiotherapy; PET/CT = positron emission tomography with coregistered computed tomography; PFS = progression-free survival; PSA = prostate-specific antigen; SBRT = stereotactic body radiotherapy.

Mean numbers reported instead of median.

Median estimated from curves.

Ost et Al. Eu Urol 2015

Toxicities associated to radiotherapy

Complication type	Muacevic et al. [24] (n = 40), no. (%)	Würschmidt et al. [*] [25] (n = 15), no. (%)	Ahmed et al. [26] (n = 17), no. (%)	Jereczek-Fossa et al. [27] (n = 19), no. (%)	Decaestecker et al. [29] (n = 50), no. (%)	Total (n = 141), no. (%)
Grade 1						
Bone pain	0(0)	0 (0)	0(0)	0(0)	3 (6)	3 (2)
Asymptomatic fracture	1 (2.5)	0(0)	0(0)	0(0)	1(2)	2 (1.4)
Fatigue	0(0)	0 (0)	0(0)	0(0)	1(2)	1 (0.7)
Rectal toxicity	0(0)	0(0)	0(0)	0(0)	2 (4)	2 (1.4)
Urinary toxicity	0(0)	0 (0)	0(0)	2(11)	0(0)	2 (1.4)
Grade 2						\frown
Nausea requiring antiemetics	5 (12.5)	0(0)	0(0)	0(0)	0(0)	5 (3.5)
Rectal toxicity	0(0)	2 (13.3)	0(0)	1 (5)	2 (4)	5 (3.5)
Urinary toxicity	0(0)	0(0)	0(0)	1 (5)	1(2)	2 (1.4)
Grade 3						\ /
Urinary toxicity	0(0)	0 (0)	0 (0)	1 (5)	0(0)	1 (0.7)

Toxicities associated to surgery

Complication type	Rinnab et al. [31] (n = 15), no. (%)	Busch et al. [37] (n=6), no. (%)	Jilg et al. [34] (n = 47), no. (%)	Suardi et al. [36] (n = 59), no. (%)	Total (n = 127), no. (%)
Grade 1					
Lymphorrhea	0 (0)	0(0)	4 (7.7)	12 (20.3)	16 (12.5)
Fever	0 (0)	0(0)	3 (5.8)	18 (30.5)	21 (16.5)
Temporary weakness of the hip flexor	0 (0)	0(0)	1 (1.9)	0(0)	1 (0.8)
Wound dehiscence	0 (0)	0(0)	3 (5.8)	0(0)	3 (2.3)
Grade 2					
Deep vein thrombosis	0 (0)	0(0)	0 (0)	1 (1.7)	1 (0.8)
Ileus	1 (7)	0(0)	0 (0)	12 (20.3)	13 (10.2)
Grade 3a					
Lymphocele requiring drainage	1 (7)	0(0)	2 (3.9)	7 (11.2)	10 (7.8)
Wound dehiscence	0 (0)	0(0)	0 (0)	3 (5.1)	3 (2.3)
Hydronephrosis requiring stenting	1 (7)	0(0)	0 (0)	0(0)	1 (0.8)
Grade 3b					
Lymphocele requiring surgical drainage	0 (0)	0(0)	0 (0)	1 (1.7)	1 (0.8)
				Ost et A	Al. Eu Urol 20

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

Castration naive

Castration resistant
 ✓ Oligoprogression on ADT
 ✓ Oligoprogression on ARTA

Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial

Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial

ADT-Free Survival

Ost et Al. J Clin Onc 2017

Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial

Indication	Surveillance (n = 31)	Metastasis-Directed Therapy (n = 31)	
Not started yet	6 (19)	12 (39)	
Polymetastatic progression	16 (55)	19 (61)	
Local progression	6 (23)	0 (0)	
Symptomatic progression	3 (10)*	O (O)	

Table 2. Indications for Starting Androgen Deprivation Therapy

NOTE. Data are presented as No. (%).

*Two patients with symptomatic progression also showed local and polymetastatic progression.

Should we combine ADT to MDT for castration-sensitive oligometastatic disease?

.....how long?

Is ADT-free survival a relevant end point for MDT-radomised trials?

Ost et Al. J Clin Onc 2017

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

- Castration naive
- Castration resistant
 ✓ Oligoprogression on ADT
 - ✓ Oligoprogression on ARTA

Treatment options for minimally- asymptomatic mCRPC

Randomised phase III trials

Study	n.pts.	Comparison	Overall Survival HR, CI 95%
TAX 327 Berthold, JCO 2008	1006	Docetaxel +P vs Mitoxantrone+P	0.76 (0.62-0.94)
COUAA 202 Ryan, NEJM 2012	1088	Abitaterone + P vs Placebo	0.75 (0.61-0.93)
PREVAIL Armstrong, NEJM 2014	1077	Enzalutamide VS Placebo	0.71 (0.60-0.84)

Eterogeneity of mCRPC

PSA Doubling Time and risk or progression or death Progression-free Survival by time to CRPC

PFS: progression-free survival; TTCRPC: time to castration resistant prostate cancer

Smith at Al. J Clin Onc 2013

Loriot et al. Eur J Cancer. 2015

Metastasis-directed therpy for oligoprogressive mCRPC

Retrospective series

Rference	n.pts	Treatment	% 2-years Distant PFS	Median systemic therapy–free surv
Muldermans, 2016	50	SBRT (BED 30-50 Gy)	45	NR
Triggiani, 2019	86	SBRT (BED 80 Gy)	33.7	21.8 months

	% Gra	ading
Toxicity	G1	G2
Pain flare	9	3
Gastrointestinal	3	-
Genitourinary	1	3

Consensus statements on ablative radiotherapy for oligometastatic prostate cancer: A position paper of Italian Association of Radiotherapy and Clinical Oncology (AIRO)

In an asymptomatic or minimally symptomatic mCRPC patient with a PSA doubling time > 6 months, time to castration-resistant phenotipe > 12 months, and oligometastases up to three nodal or bone lesions detected by metabolic imaging, RT with radical intent to metastatic sites could be offered as alternative to ARTA to delay systemic treatment

D'Angelillo at Al. Crit. Rev Oncol Hematol 2019

Local treatment to the primary tumor (Rt or Surg) Rationale

Evidences •Radiotherapy •Surgery

Metastasis-directed therapy in oligometastatic disease

Definition of the 'oligo-state'

Evidences

- Castration naive
- Castration resistant
 - \checkmark Oligoprogression on ADT
 - ✓ Oligoprogression on ARTA

Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3

in cases in

which multiple sites of disease continue to respond but one to two sites grow, focal therapy such as radiation or surgery could be administered to the resistant site(s) and systemic therapy continued. Combining Abiraterone and Radiotherapy in Prostate Cancer Patients Who Progressed During Abiraterone Therapy

32 patients affected by mCRPC showing oligoprogression on treatment with Abiraterone Acetate

mPFS from abiraterone initiation 12.6 months

mPFS from radiotherapy administration 9.6 months

No safety signals identified

Detti et Al. Anticanc Res 2016

Consensus statements on ablative radiotherapy for oligometastatic prostate cancer: A position paper of Italian Association of Radiotherapy and Clinical Oncology (AIRO)

In an asymptomatic or minimally symptomatic oligoprogressive mCRPC patient, with up to two nodal or bone lesions, in treatment with ARTA from at least 6 months, RT with radical intent to sites of metastases of progressive disease could be offered as an alternative to the change of systemic treatment Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial

Patients characteristics

	Control group (n=33)	SABR group (n=66				
Site of original primary tumour						
Breast	5 (15%)	13 (20%)				
Colorectal	9 (27%)	9 (14%)				
Lung	6 (18%)	12 (18%)				
Prostate	2 (6 %)	14 (21%)				
Other	11 (33%)	18 (27%)				
Time from diagnosis of primary tumour to randomisation (years)	2·3 (1·3-4·5)	2.4 (1.6–5.3)				
Number of metastases						
1	12 (36 %)	30 (46%)				
2	13 (40%)	19 (29%)				
3	6 (18%)	12 (18%)				
4	2 (6%)	2 (3%)				
5	0 (0%)	3 (5%)				

	Control group (n=33)	SABR group (n=66)
Location of metastases		
Adrenal	2/64 (3%)	7/127 (6%)
Bone	20/64 (31%)	45/127 (35%)
Liver	3/64 (5%)	16/127 (13%)
Lung	34/64 (53%)	55/127 (43%)
Other*	5/64 (8%)	4/127 (3%)

Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial

Palma et Al. Lancet Onc 2019

Ongoing randomised trials of metastases directed therapy for mPC

Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation

Panel: Characteristics of oligometastatic disease

Descriptive tumour characteristics

- Primary tumour characteristics: primary tumour site, histology, stage according to TNM Classification of Malignant Tumours, mutational status, tumour marker
- History of cancer progression: time interval since first diagnosis, disease-free interval, treatment-free interval
- History of treatment of primary tumour: method of local treatment, radical or palliative intent, controlled primary tumour
- History of systemic therapy before diagnosis of oligometastatic disease: types of systemic therapy, number of lines of systemic therapy
- Oligometastatic disease staging: imaging method, anatomical areas covered, invasive staging
- Involved organs of oligometastatic disease

Quantitative characteristics

- Number of metastatic lesions
- Number of involved organs
- Number of lesions per organ
- Maximum size or volume of individual metastasis

Quantitative characteristics

- Number of metastatic lesions
- Number of involved organs
- Number of lesions per organ
- · Maximum size or volume of individual metastasis

Developmental characteristics

- Does the patient have a history of polymetastatic disease before oligometastatic disease diagnosis?
- Does the patient have a history of oligometastatic disease before current diagnosis?
- Is oligometastatic disease diagnosed within 6 months after diagnosis of the primary tumour?
- Is the patient under active systemic therapy at the time of oligometastatic disease diagnosis?
- Are any oligometastatic lesions progressive on current imaging?

Guckemberger et Al. Lancet Onc 2020

A De-novo oligometastatic disease

Synchronous oligometastatic disease

• T0: first time diagnosis of primary cancer (green) and oligometastases (red) within 6 months

Metachronous oligorecurrence

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Systemic therapy-free interval
- T0: First time diagnosis of new oligometastases (red) > 6 months after diagnosis of cancer

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Under treatment with active systemic therapy
- T0: first time diagnosis of new oligometastases (red) > 6 months after diagnosis of cancer

B Repeat oligometastatic disease

Repeat oligorecurrence

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases

Repeat oligoprogression

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases

Repeat oligopersistence

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive (red) oligometastases

C Induced oligometastatic disease

Induced oligorecurrence

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

Induced oligoprogression

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

Induced oligopersistence

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive oligometastases (red), where response is worse compared with other residual metastases (black)

Guckemberger et Al. Lancet Onc 2020

Metachronous oligoprogression

Platinum Opinion

"Gotta Catch 'em All", or Do We? *Pokemet* Approach to Metastatic Prostate Cancer

Declan G. Murphy^{a,b,c,*}, Christopher J. Sweeney^d, Bertrand Tombal^e

New Imaging

Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC Imaging Group

Proposed clinical trial for newly diagnosed prostate cancer

Lecouvet et Al. Lancet Onc 2018

....modern imagning is just the peak of the iceberg

Any image taken of a

cancer is a snapshot of an ongoing process that does not inform on the kinetics of the progression.

If some patients indeed harbour slow-growing metastatic deposits, others may be rapidly progressive disease wrongly frozen in an oligometastatic state by a still image.

will need more biomarkers to ascertain the natural history of the disease and, more importantly, to distinguish who needs MDT instead of systemic treatment and who needs MDT on top of systemic therapy.

Tumor Biology Staging the Metastatic Spectrum Through **Integration of Clinical and Molecular Features**

Corey et Al. J Clin Oncol 2019
Local treatment to the primary tumor (Rt or Surg)

Basing on 2 RCT and 1 meta-analysis RT should not be recommended for the ITT population....but it can be considered for patients with *low volume M1 disease (OS sig. improved)*

Surgery is not yet validated and should be considered experimental

Metastasis-directed therapy in oligometastatic disease

The oligometastatic state defines an *'intermediate stage of disease'* that might benefit from local treatment

There is growing evidence about the offect of MDT on clinical outcomes in oligometastatic prostate cancer

Level of evidence is low (mainly retrospective) and need further validation in prospective randomised trials

Understandig the role of new imaging and the biology of oligomtastatic disease is essential for future developments