Non-Metastatic Castration-Resistant Landscape

- 5.00 pm 5.20 pm Clinical Case and Evidence from Literature E. Zanardi
- 5.20 pm 5.50 pm **Experts on stage** K. Fizazi – G. Procopio
- 5.50 pm 6.30 pm Drivers: N. Mottet - G. Pappagallo | Provokers: G. Facchini, L. Fratino, M. Maruzzo, R. Sabbatini

6.30 pm *Closing remarks*

24th, 25th January 2023 Teatro Sociale Trento | Italy

SCIENTIFIC COMMITTEE Orazio Caffo Giovanni Pappagallo

Elisa Zanardi

UO Clinica di Oncologia Medica IRCCS Policlinico San Martino – Genova

Disclosures

• Advisory Board/Honoraria: Janssen, Astellas, MSD, Ipsen, BMS

Clinical Case

S.R., 71y

Medical history: appendicectomy and tonsillectomy, anterior-posterior myocardial infarction (2000), hypercholesterolemia

Oncological history:

12/2010: radical prostatectomy + pelvic lymphadenectomy for adenocarcinoma of the prostate Gleason 3+5=8/10 pT3b pN0 (0/12) R1

PSA after surgery = 0.09 ng/ml

• 03/2011-04/2011: Adjuvant radiation therapy.

PSA nadir (08/2011)=0.07 ng/ml

 11/2016: Biochemical recurrence and progression until PSA 2.31 ng/ml → Choline PET was performed, resulting negative; therefore, ADT (LHRHa agonist) was started.

Initial biochemical complete response and subsequent PSA increase, therefore patient was led to referral to our attention (Oncology Unit).

Clinical Case

• 12/2019: SR, 80y. Good general health conditions, ECOG PS 0. <u>Therapy</u>: clopidogrel, metoprolol, ezetimib, triptorelin

Testosterone: 20 ng/dl PSA (04/2019)=0.66 ng/ml PSA (09/2019)=0.98 ng/ml PSA (12/2019)=1.51 ng/ml

- CT scan (11/03/2020): neg
- Bone scan(15/03/2020): neg
- PSA (03/2020): 2.14 ng/ml (testosterone: 20 ng/dl)
- PSA DT: 5.3 months

Clinical Case

CT/bone scan:

neg

APALUTAMIDE GU Serie Generale n 289 del 10/12/2019

• Start Apalutamide (03/2020) PSA (07/2020)=0.85 ng/ml PSA (11/2020)=0.13 ng/ml PSA (03/2021)=0.13 ng/ml PSA (07/2021)=0.23 ng/ml PSA (11/2021)=0.26 ng/ml PSA (03/2022)=0.42 ng/ml PSA (07/2022)=0.51 ng/ml PSA (11/2022)=0.54 ng/ml

Adverse Events

 Hypertension G2 → + perindopril and amlodipine

Supportive care

 Denosumab every six months

Apalutamide + LHRHa still ongoing

Evidence from Literature: Definition of nmCRPC

	No ADT	Progressed on ADT
No distant metastasis CT/BS	Localized or locally advanced PC	nmCRPC
Distant metastasis	mHNPC	mCRPC

non-metastatic CRPC (nmCRPC) prevalence has been estimated to 7% of prostate cancer in the EU

Evidence from Literature: PSA DT

Fig 2. Kaplan-Meier time to bone metastasis or death according to tertiles of prostate-specific antigen (PSA) and PSA doubling time (PSADT).

Evidence from Literature: NHT in nmCRPC

SPARTAN trial: Apalutamide

PROSPER trial: Enzalutamide

ARAMIS trial: Darolutamide

Smith MR, NEJM 2018 Hussain M, NEJM 2018 Fizazi K, NEJM 2019

Evidence from Literature: NHT in nmCRPC – MFS and OS

Evidence from Literature: Adverse Events

	SPARTAN		PROS	SPER	ARAMIS		
AE (all grades, %)	APA (n=803)	PBO (n=398)	ENZA (n=930)	PBO (n=465)	DARO (n=954)	PBO (n=554)	
Fatigue	30.4	21.1	33.0	14.0	12.1	8.7	
Hypertension	24.8	19.8	12.0	5.0	6.6	5.2	
Rash	23.8	5.5	NR	NR	2.9	0.9	
Falls	15.6	9.0	11.0	4.0	4.0 4.2		
Fractures	11.7	6.5	NR	NR	4.2	3.6	
Mental impairment disorders	5.1	3.0	5.0	2.0	0.4	0.2	
Hypotyroidism	8.1	2.0	NR	NR	0.2	0	
Seizure	0.2	0	0.3 0		0.2	0.2	
ANY SAE, %	24.8	23.1	24	18	24.8	20.0	

Smith MR, NEJM 2018; Hussain M, NEJM 2018; Fizazi K, NEJM 2019

Evidence from Literature: Drug-Drug Interactions

Table 2. DDIs between ARIs and frequent treatments for common metabolic disorders in men with nmCRPC receiving ADT.

			Effect of ARIs on comedication exposure ('perpetrators')			Effect of comedications on ARI exposure ('victims')			
Condition	Drug class	Common treatments	Apalutamide	Enzalutamide	Darolutamide	Apalutamide	Enzalutamide	Darolutamide	
Hypertension	Ca channel blocker	Diltiazem	11/11	11/1	-/-	-/-	-/-	-/-	
		Nifedipine	↓↓/↓↓	↓↓/↓↓	-/-	-/-	-/-	-/-	
		Verapamil	↓↓/↓↓	↓↓/-	-/-	-/-	-/↑	-/-	
		Amlodipine	1/11	1/11	-/-	-/-	-/-	-/-	
	ARB	Losartan	↓/↓	1/1	-/-	-/-	-/-	-/-	
		Valsartan	-/↓	-/-	-/1	-/-	-/-	-/-	
	Beta-blocker	Atenolol	-/-	-/-	-/-	-/-	-/-	-/-	
		Propranolol	-/↓	-/↓	-/-	-/-	-/-	-/-	
		Bisoprolol	↓/-	↓/-	-/-	-/-	-/-	-/-	
	ACE inhibitor	Enalapril	-/-	-/-	-/-	-/-	-/-	-/-	
		Captopril	-/-	-/-	-/-	-/-	-/-	-/-	
	Diuretics	Furosemide	-/-	-/-	-/-	-/-	-/-	-/-	
		Hydrochlorothiazide	-/-	-/-	-/-	-/-	-/-	-/-	
		Spironolactone	-/-	-/-	-/-	-/-	-/-	-/-	
Dyslipidaemia	Statins	Rosuvastatin	1/1	-/-	<u>† †/† †</u>	-/-	-/-	-/-	
		Atorvastatin	1\1	1\1	-/↑	-/-	-/-	-/-	
		Simvastatin	-/↓	-/↓	-/↑	-/-	-/-	-/-	
		Fluvastatin	-/↓	1\1	-/↑	-/-	-/-	-/-	
		Pravastatin	-/↓	-/-	-/↑	-/-	-/-	-/-	
		Pitavastatin	-/↓	-/-	-/↑	-/-	-/-	-/-	
		Lovastatin	-/↓	-/↓	-/↑	-/-	-/-	-/-	
	Fibrates	Gemfibrozil	-/-	-/-	-/-	t/t	11/1	-/-	
Diabetes mellitus	Biguanides	Metformin	-/-	-/-	-/-	-/-	-/-	-/-	
	Sulfonylureas	Gliclazide	-/↓	1/1	-/-	-/-	-/-	-/-	
		Glimepiride	-/↓	1/1	-/-	-/-	-/-	-/-	
		Glyburide	-/↓	1/1	-/1	-/-	-/-	-/-	
	DPP-4 inhibitors	Linagliptin	11/1	↓↓/↓	-/-	-/-	-/-	-/-	
		Saxagliptin	†\†	t\†	-/-	-/-	-/-	-/-	
	Meglitinides	Repaglinide	†\†	t\†	-/1	-/-	-/-	-/-	
	Insulin	Insulin	-/-	-/-	-/-	-/-	-/-	-/-	

Conde-Estevez D, Exp Opin Drug Metab Toxicol 2022

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse. Fizazi K, ASCO GU 2019

Tombal B, Lancet Oncol 2019

Evidence from Literature: Conventional Imaging (CIM) vs PSMA-PET/CT

55% M1

•

۲

٠

N = 200n = 196 n = 444% local recurrence (24% on prostate bed) N/M disease extent in PSMA-PET: unifocal in 15% M1a 39% M1b 24% Tr 55% N1 54% M1c 6% oligometastatic (2–3 metastases) in 14% multiple/disseminated 46%.

Evidence from Literature: Conventional Imaging (CIM) vs PSMA-PET/CT

Will Rogers phenomenon:

Use of PSMA PET/CT is associated with a stage migration that improve the prognosis of both groups, nmCRPC and mCRPC, without any change in individual outcomes.

Cattrini C, Cancers 2022

Evidence from Literature: Metastasis Directed Therapy

«For certain tumors, the anatomy and physiology may limit or concentrate these metastases to a single or a limited number of organs »

EDITORIAL

Oligometastases

«An attractive consequence of the presence of a clinically significant oligometastatic state is that some patients so affected should be amenable to a curative therapeutic strategy»

Evidence from Literature: Metastasis Directed Therapy

Pan J, Eur Urol Oncol 2022

≤3

Pan J, Eur Urol Oncol 2022

Evidence from Literature: Role of PSMA-PET/CT

EUO Priority Article

EAU-EANM Consensus Statements on the Role of Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Patients with Prostate Cancer and with Respect to [¹⁷⁷Lu]Lu-PSMA Radioligand Therapy

No.	Round 1 (original phrasing)	Round 1 (rephrased)		Round 1		Round 2	
			MS	CA	MS	CA	
1	PSMA PET/CT should be performed in any high-risk PCa		8	Yes			
	patient at staging						
2	PSMA PET/CT should be performed in some intermediate-	PSMA PET/CT should be considered in unfavourable	7	Yes	8	Yes	
	risk PCa patients at staging	intermediate-risk PCa patients at staging					
3	PSMA PET/CT should be performed in any BCR patients	PSMA PET/CT should be performed in the majority of BCR	9	Yes	9	Yes	
		patients					
4	PSMA PET/CT should be performed in nmCRPC patients	PSMA PET/CT should be performed in the majority of	5.5	Yes	5	Yes	
		nmCRPC patients					
5	PSMA PET/CT should be performed in any mCRPC patient	PSMA PET/CT should be performed in the majority of	3	No	3	Yes	
	to evaluate disease progression	mCRPC patients to evaluate disease progression					

Table 1 – Proposed statements and Delphi voting results regarding the role of PSMA-based imaging and therapy in prostate cancer ^a

- Patient heterogeneity;
- Lack of long-term data regarding the benefit of metastasis directed therapy in CRPC (as a result of detecting distant lesions via PSMA PET/CT);
- Lack of data on appropriate sequencing of treatment.

Evidence from Literature: Molecular Subtypes

- Molecular profiling undertaken in archive tumor samples collected 6.7 y before nmCRPC status →estabilished at a much earlier clinical time
- High GC scores derived the greatest absolute benefit from APA+ADT
- Luminal tumors treated with APA+ADT had better outcomes

Feng FY, JAMA Oncol 2021

Evidence from Literature: Bone Protecting Agents

□ Normal ■ Osteopenia ■ Osteoporosis

Smith MR, J Urol 2003

Smith MR, NEJM 2009

Month

nmCRPC: Conclusions

- NHTs added to ADT prolongue MFS and OS
- The majority of AEs associated to NHTs are G1-G2 and easily manageable
- The different profile of pharmacological interactions allows to choose the most suitable molecule for each patient
- QoL was not worsened by adding NHT to ADT
- CIMs (TC and bone scan) should be used to select patients with PSA rise during ADT and with PSA DT ≤ 10 months
- Prospective Randomized Clinical trials ongoing to identify the role of NGI and of MDT in management of nmCRPC
- Genomic biomarkers could help us to identify patients with higher benefit from addition of NHT to ADT
- Remember the importance of Bone Protecting Agents in these patients that are exposed from long time to ADT